skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Qiangzhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in ‘lure and kill’ mechanism (denoted ‘MΦ-NP(L&K)’) for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders. 
    more » « less
  2. null (Ed.)
  3. Abstract Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K‐NP”). The L&K‐NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in‐coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K‐NP structure, which voids toxicity associated with free molecules. In the study, L&K‐NPs effectively inhibit PLA2‐induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K‐NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K‐NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti‐PLA2 approach. 
    more » « less
  4. Abstract White blood cells (WBCs) are immune cells that play essential roles in critical diseases including cancers, infections, and inflammatory disorders. Their dynamic and diverse functions have inspired the development of WBC membrane‐coated nanoparticles (denoted “WBC‐NPs”), which are formed by fusing the plasma membranes of WBCs, such as macrophages, neutrophils, T cells, and natural killer cells, onto synthetic nanoparticle cores. Inheriting the entire source cell antigens, WBC‐NPs act as source cell decoys and simulate their broad biointerfacing properties with intriguing therapeutic potentials. Herein, the recent development and medical applications of WBC‐NPs focusing on four areas, including WBC‐NPs as carriers for drug delivery, as countermeasures for biological neutralization, as nanovaccines for immune modulation, and as tools for the isolation of circulating tumor cells and fundamental research is reviewed. Overall, the recent development and studies of WBC‐NPs have established the platform as versatile nanotherapeutics and tools with broad medical application potentials. 
    more » « less